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Abstract
We discuss some of the key topological aspects of a (1 + 1)-dimensional
(2D) self-interacting non-Abelian gauge theory (having no interaction with
matter fields) in the framework of chiral superfield formalism. We provide
the geometrical interpretation for the Lagrangian density, symmetric energy–
momentum tensor, topological invariants, etc, by exploiting the on-shell
nilpotent BRST and co-BRST symmetries that emerge after the application of
(dual) horizontality conditions. We show that the above physically interesting
quantities geometrically correspond to the translation of some local (but
composite) chiral superfields along one of the two independent Grassmannian
directions of a (2 + 2)-dimensional supermanifold. This translation is generated
by the conserved and on-shell nilpotent (co-)BRST charges that are present in
the theory.

PACS numbers: 11.10.−z, 11.30.Ph, 02.40.−k, 02.20.+b, 11.15.−q

1. Introduction

The modern developments in the subject of topological field theories (TFTs) have encompassed
in their ever-widening horizons a host of diverse and distinct areas of research in theoretical
physics and mathematics. In this context, mention can be made of interesting topics such as
Chern–Simon theories, topological string theories and matrix models, 2D topological gravity,
Morse theory, Donaldson and Jones polynomials, etc (see, e.g., [1] and references therein for
details). Without going into the subtleties and intricacies, TFTs can be broadly classified into
two types. The Witten-type TFTs [2] are those where the Lagrangian density turns out to
be the Becchi–Rouet–Stora–Tyutin (BRST) (anti-)commutator. The conserved and nilpotent
BRST charge for such a class of TFTs generates a symmetry that is a combination of a
topological shift symmetry and some types of local gauge symmetry. On the other hand,
the Schwarz-type TFTs [3] are characterized by the existence of a conserved and nilpotent
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BRST charge that generates only some local gauge type of symmetries for a Lagrangian
density that cannot be completely expressed as the BRST (anti-)commutator (see, e.g.,
[1] for details). For both types of TFTs, there are no energy excitations in the physical
sector of the theory because the energy–momentum tensor turns out to be a BRST (anti-)
commutator and all the physical states (including the vacuum) of this theory are supposed to
be invariant w.r.t. the conserved, nilpotent, metric-independent and Hermitian BRST charge
Qb (i.e. Qb|vac〉 = 0,Qb|phys〉 = 0).

Recently, in a set of papers [4–7], the free 2D Abelian and self-interacting non-Abelian
gauge theories (without any kind of interaction with matter fields) have been shown to belong
to a new class of TFTs because the Lagrangian density of the theory turns out to bear an
appearance similar to the Witten-type theories but the local symmetries of the theory are that
of Schwarz type. Furthermore, these non-interacting as well as self-interacting 2D theories
[4–7], interacting 2D Abelian gauge theory (where there is an interaction between Dirac
fields and 2D photon) [8, 9] and (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory
[10] have been shown to provide a set of tractable field theoretical models for the Hodge
theory where the local, covariant and continuous symmetries of the Lagrangian density
and corresponding conserved charges (as generators) are identified with all three de Rham
cohomology operators of differential geometry1. The geometrical interpretation for these
charges as the translation generators along some specific directions of a (2 + 2)-dimensional
supermanifold has also been established for the 2D free and self-interacting (non-)Abelian
gauge theories [15–17]. In a recent paper [18], some of the key features of the topological
nature of a 2D free Abelian gauge theory have been captured in the superfield formulation
[19–23] and their geometrical interpretations have been provided in the language of translations
along some specific directions of the (2 + 2)-dimensional supermanifold. One of the central
themes of our present paper is to extend our work on the free 2D Abelian gauge theory [18]
to the more general case of self-interacting 2D non-Abelian gauge theory and provide the
geometrical interpretation for some key topological properties associated with this theory in
the framework of (geometrical) superfield formulation [19–23]. Such studies are important
because they provide a geometrical origin for some of the key topological quantities of physical
interest (e.g., Lagrangian density, symmetric energy–momentum tensor, topological invariants,
etc) for the (non-)Abelian gauge theories. In particular, our results on the geometrical origin
and interpretation for the Lagrangian density and corresponding symmetric energy–momentum
tensor are completely novel in nature vis-à-vis the key results of [17, 20–22] where the
geometrical interpretation for only the nilpotent (anti-)BRST charges [17, 20–22] (and (anti-)
co-BRST charges [17]) has been provided. The key observations of our present paper are,
however, similar to those of [18].

The self-interacting non-Abelian gauge theory (having no interaction with matter fields)
is described by a singular Lagrangian density that happens to be endowed with first-class
constraints in the language of Dirac’s classification scheme [24, 25]. For the BRST
quantization of such a theory, the original Lagrangian density is extended to include the
gauge-fixing and Faddeev–Popov ghost terms so that the theory can maintain unitarity and
‘quantum’ gauge symmetry (i.e. nilpotent BRST symmetry) together at any arbitrary order
of perturbation theory. The ensuing Lagrangian density that respects the on-shell nilpotent
BRST symmetry, however, does not respect the corresponding on-shell nilpotent anti-BRST
symmetry. To the best of our familiarity with the relevant literature, the on-shell nilpotent

1 On a compact manifold without a boundary, the set of operators (d, δ,�) (with d = dxµ∂µ, δ = ± ∗ d∗,� =
dδ + δd) define the de Rham cohomological properties of the differential forms. They are called the exterior derivative,
co-exterior derivative and Laplacian operator, respectively, and obey d2 = δ2 = 0, [�, d] = [�, δ] = 0,� = {d, δ} =
(d + δ)2. Here ∗ stands for the Hodge duality operation [11–14].
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version of the anti-BRST symmetry does not exist for the self-interacting and/or interacting
non-Abelian gauge theory in any arbitrary spacetime dimension. This feature of the self-
interacting non-Abelian gauge theory is drastically different from its Abelian counterpart
where both the on-shell nilpotent (anti-)BRST symmetries are respected by one and the same
Lagrangian density (see, e.g., [15, 16]). A possible explanation for this discrepancy has
been provided in a recent paper [26] by resorting to the geometrical superfield approach to
BRST formalism. In our present paper, we obtain the on-shell nilpotent version of the BRST
and co-BRST symmetries for the 2D self-interacting non-Abelian gauge theory by exploiting
the generalized versions of horizontality condition2 w.r.t. the (super) cohomological operators
(d̃)d (together with the Maurer–Cartan equation) and (δ̃)δ defined on the (2 + 2)-dimensional
supermanifold. In this endeavour, the choice of the superfields to be chiral plays a very decisive
role as the (dual) horizontality conditions (w.r.t. (δ̃)δ and (d̃)d) lead to the derivation of the
on-shell nilpotent (co-)BRST symmetries only. The off-shell version of these symmetries has
already been obtained in [17] where the ideas of [20–22] on the (anti-)BRST symmetries have
been expanded and new (anti-)co-BRST symmetries have been introduced and derived in the
superfield formalism by exploiting the above (super) cohomological operators together with the
imposition of (dual) horizontality conditions. In contrast to the choice of chiral superfields for
the derivation of the on-shell nilpotent (co-) BRST symmetries, the off-shell nilpotent (anti-)
BRST and (anti-) co-BRST symmetries have been derived by taking into account the most
general superfield expansion along the θ -, θ̄ - and θ θ̄-directions of the (2 + 2)-dimensional
supermanifold [17].

In our present discussion, we concentrate only on the on-shell version of nilpotent
BRST and co-BRST symmetries (avoiding any discussion about the anti-BRST and anti-
co-BRST symmetries) because the basic Lagrangian density (see, e.g., (2.1)) respects only
these symmetries. The derivations of these symmetries and corresponding generators are
good enough to shed some light on the topological nature of the 2D self-interacting non-
Abelian gauge theory. In fact, the topological nature of this theory is encoded in the form of
the Lagrangian density and the symmetric energy–momentum tensor which can be thought
of as the translation of some local (but composite) chiral superfields along one of the two
Grassmannian directions of the supermanifold. This translation is generated by the on-
shell nilpotent BRST and co-BRST charges which turn out to geometrically correspond to
the translation generators along one of the two Grassmannian directions of the (2 + 2)-
dimensional supermanifold. In mathematical terms, the Lagrangian density and symmetric
energy–momentum tensor for the present theory turn out to be the total derivative of some
local (but composite) chiral superfields w.r.t. one of the two Grassmannian variables (cf
(5.1) and (5.5)). In these derivations, the chiral superfield expansions are taken to be those
that are obtained after the application of (dual) horizontality conditions. Thus, the (super)
cohomological operators (δ̃)δ and (d̃)d play very important and pivotal roles for our present
discussions through the (dual) horizontality restrictions.

Our present investigation is essential primarily on three counts. First, to the best of our
knowledge, the full potential of (super) co-exterior derivatives (δ̃)δ has not yet been thoroughly
exploited in the context of the superfield approach to the BRST formalism except in some
of our recent works [15–18]. Thus, besides whatever has been achieved and understood in
[15–18, 26], it is important to explore the utility of these (super) cohomological operators
in their diverse, distinct and multiple forms. Second, our present paper explains the reason
behind the existence of on-shell nilpotent (co-)BRST symmetries for the Lagrangian density
(cf (2.1)) that does not respect on-shell nilpotent anti-BRST and anti-co-BRST symmetries.

2 This condition is referred to as the ‘soul-flatness’ condition by Nakanishi and Ojima [27].
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In fact, the choice of the chiral superfields (along with the idea of (dual) horizontality
conditions) plays an important role in proving the existence of on-shell nilpotent (co-)BRST
symmetries. The choice of the anti-chiral superfields does not lead to the derivation of anti-
BRST and anti-co-BRST symmetries for this theory as explained in our recent work [26].
Finally, the geometrical understanding of the Lagrangian density and the symmetric energy–
momentum tensor for the present theory might turn out to be useful in understanding the
topological 2D gravity and topological string theories where a non-trivial metric is chosen
for the theoretical discussions of such kinds of gauge theories in the background of curved
spacetime.

The contents of our present paper are organized as follows. In section 2, we set up the
notation and briefly recapitulate the bare essentials of the BRST and co-BRST symmetries for
the 2D self-interacting non-Abelian gauge theory in the Lagrangian formulation. Sections 3
and 4 are devoted to the derivation of the above on-shell nilpotent symmetries in the
framework of superfield formalism. In section 5, we discuss topological aspects and provide
their geometrical interpretations in the language of translations on the (2 + 2)-dimensional
supermanifold. Finally, in section 6, we make some concluding remarks and point out a few
directions that can be pursued later.

2. BRST and co-BRST symmetries: Lagrangian formulation

Let us begin with the BRST-invariant Lagrangian density LB for the self-interacting (1 + 1)-
dimensional3 non-Abelian gauge theory in the Feynman gauge [27–30],

LB = − 1
4Fµν · Fµν − 1

2 (∂µAµ) · (∂ρA
ρ) − i∂µC̄ · DµC

≡ 1
2E · E − 1

2 (∂µAµ) · (∂ρAρ) − i∂µC̄ · DµC (2.1)

where Fµν = ∂µAν − ∂νAµ + Aµ × Aν is the field strength tensor derived from the connection
1-form A = dxµAa

µT a (with Aµ = Aa
µT a as the vector potential) by the application of the

Maurer–Cartan equation F = dA + A ∧ A where d = dxµ∂µ is the exterior derivative
(with d2 = 0) and the 2-form F = 1

2 (dxµ ∧ dxν)F a
µνT

a . In the 2D spacetime, only
the electric field component (F01 = E = EaT a) of the field strength tensor Fµν exists.
Here T a form the compact Lie algebra: [T a, T b] = f abcT c with structure constants f abc

which can be chosen to be totally antisymmetric in a, b, c (see, e.g., [30] for details).
The gauge-fixing term is derived as δA = (∂ρA

ρaT a) where δ = −∗d∗ (with δ2 = 0)
is the co-exterior derivative and ∗ is the Hodge duality operation. The (anti-)commuting
(CaC̄b +C̄bCa = 0, (Ca)2 = (C̄a)2 = 0) (anti-)ghost fields (C̄a) Ca are required in the BRST-
invariant theory to maintain unitarity and ‘quantum’ gauge (i.e. BRST) invariance together at
any arbitrary order of perturbative calculations. In fact, these (anti-)ghost fields (which are not
matter fields) interact with the self-interacting non-Abelian gauge fields

(
Aµ = Aa

µT a
)

only
in the loop diagrams of perturbation theory (see, e.g., [31] for details). The above Lagrangian
density (2.1) respects (sbLB = −∂µ[(∂ρA

ρ) · DµC], sdLB = ∂µ[E · ∂µC̄]) the following
on-shell (∂µDµC = Dµ∂µC̄ = 0) nilpotent

(
s2
b = 0, s2

d = 0
)

BRST (sb) and dual(co)-BRST

3 We adopt here the conventions and notation such that the 2D flat Minkowski metric is ηµν = diag (+1,−1) and
� = ηµν∂µ∂ν = (∂0)

2 − (∂1)
2, F01 = F 10 = −εµν(∂µAν + 1

2 Aµ × Aν) = E = ∂0A1 − ∂1A0 + A0 × A1, ε01 =
ε10 = +1, DµC = ∂µC + Aµ × C, α · β = αaβa, (α × β)a = f abcαbβc for non-null vectors α and β in the group
space. Here Greek indices µ, ν . . . = 0, 1 correspond to the spacetime directions on the 2D manifold and Latin
indices a, b, c . . . = 1, 2, 3 . . . stand for the Lie group ‘colour’ values.
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(sd) symmetry4 transformations [5, 6, 17, 26]:

sbAµ = DµC sbC = − 1
2C × C sbC̄ = −i(∂µAµ) sbE = E × C

sdAµ = −εµν∂
νC̄ sd C̄ = 0 sdC = −iE sdE = Dµ∂µC̄.

(2.2)

The above continuous symmetries, according to Noether’s theorem, lead to the following
expressions for the conserved and on-shell nilpotent (co-)BRST charges (Qd) Qb [5, 6],

Qb =
∫

dx
[
∂0(∂ρA

ρ) · C − (∂ρA
ρ) · D0C +

i

2
˙̄C · C × C

]
(2.3)

Qd =
∫

dx[E · ˙̄C − D0E · C̄ − iC̄ · ∂1C̄ × C]

which turn out to be the generator for the transformations (2.2). This latter statement can be
succinctly expressed in the mathematical form (for the generic field � = �aT a) as

sr� = −i[�,Qr ]± r = b, d (2.4)

where brackets [ , ]± stand for the (anti-)commutators for any arbitrary generic field � (≡
Aµ,C, C̄) being (fermionic) bosonic in nature. Left to itself, the Lagrangian density (2.1)
does not respect any anti-BRST and anti-co-BRST symmetries. These symmetries can be
brought in, however, by modifying (2.1) to incorporate a specific set of auxiliary fields (see,
e.g., [5, 6]). It is interesting to note that only the off-shell nilpotent version of these symmetries
exists for the modified Lagrangian density (see, e.g., [27–30] for details). With the help of
equations (2.3) and (2.4), the Lagrangian density (2.1) can be expressed, modulo some total
derivatives, as the sum of on-shell nilpotent BRST and co-BRST anti-commutators:

LB =
{
Qd,

1

2
E · C

}
−

{
Qb,

1

2
(∂ρAρ) · C̄

}
≡ sd

[ i

2
E · C

]
− sb

[ i

2
(∂ρA

ρ) · C̄
]
. (2.5)

The appearance of the above Lagrangian density is that of Witten-type TFTs when the physical
states (and vacuum) of the theory are supposed to be annihilated by Qb and Qd . Such a situation
does arise if we invoke the harmonic state of the Hodge decomposed state to correspond to
the physical state in the total quantum Hilbert space [5–7]. The expression for the symmetric
energy–momentum tensor T (s)

µν for the Lagrangian density (LB) is

T (s)
µν = −1

2
(∂ρA

ρ) · (∂µAν + ∂νAµ) − 1

2
E · (ενρ∂µAρ + εµρ∂νA

ρ)

− i

2
(∂µC̄) · (DνC + ∂νC) − i

2
(∂νC̄) · (DµC + ∂µC) − ηµνLB. (2.6)

This also turns out, modulo some total derivatives, to be the sum of BRST and co-BRST
anti-commutators as given below [6]:

T (s)
µν = {

Qb,L
(1)
µν

}
+

{
Qd,L

(2)
µν

} ≡ sb

(
iL(1)

µν

)
+ sd

(
iL(2)

µν

)
L(1)

µν = 1
2 [∂µC̄ · Aν + ∂νC̄ · Aµ + ηµν(∂ρAρ) · C̄] (2.7)

L(2)
µν = 1

2 [∂µC · ενρA
ρ + ∂νC · εµρA

ρ − ηµνE · C].

The generic form of the topological invariants (Ik and Jk) with respect to the conserved and
on-shell (∂µDµC = Dµ∂µC̄ = 0) nilpotent

(
Q2

b = Q2
d = 0

)
BRST (Qb) and co-BRST (Qd)

charges, on the 2D manifold, is

Ik =
∮

Ck

Vk Jk =
∮

Ck

Wk (k = 0, 1, 2) (2.8)

4 We follow here the notation and conventions of [30]. In fact, in its full glory, a nilpotent (δ2
(D)B = 0) (co-)BRST

transformation (δ(D)B) is equivalent to the product of an anti-commuting (ηC = −Cη, ηC̄ = −C̄η) spacetime-
independent parameter η and (sd)sb (i.e. δ(D)B = ηs(d)b) where s2

(d)b = 0.
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where Ck are the k-dimensional homology cycles in the 2D manifold and Vk and Wk are the
k-forms w.r.t. Qb and Qd , respectively5. These forms are [5, 6]

V0 = −(∂ρA
ρ) · C − i

2
C̄ · C × C V1 = [−(∂ρA

ρ) · Aµ + iC · DµC̄] dxµ

V2 = i[Aµ · DνC̄ − C̄ · DµAν] dxµ ∧ dxν
(2.9)

W0 = E · C̄ W1 = [C̄ · εµρ∂
ρC − iE · Aµ] dxµ

W2 = i
[
εµρ∂

ρC · Aν + 1
2C · εµν(∂ρAρ)

]
dxµ ∧ dxν.

(2.10)

These topological invariants obey certain specific kinds of recursion relations [5, 6] which
primarily shed some light on the connection between (co-)BRST transformations and operation
of (co-)exterior derivatives on these invariants (cf (5.4)). Equations (2.5)–(2.10) establish the
topological nature of the above self-interacting 2D non-Abelian gauge theory. For this theory,
with off-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries and corresponding
conserved and off-shell nilpotent charges, a set of four topological invariants has been
computed in [6]. In what follows hereafter, we shall concentrate, however, only on the
Lagrangian density (2.1), its on-shell nilpotent symmetry generators (i.e. (co-)BRST charges)
and corresponding topological invariants.

3. On-shell nilpotent BRST symmetry: superfield formulation

To provide the geometrical interpretation for the conserved and on-shell nilpotent BRST
charge Qb (cf (2.3)) as the translation generator in the framework of the superfield formulation
[19–23], we first generalize the basic generic local field �(x) = (Aµ(x), C(x), C̄(x))

of the Lagrangian density (2.1) to a chiral (∂θVs(x, θ, θ̄ ) = 0) supervector superfield
Vs = (Bµ(x, θ̄),�(x, θ̄), �̄(x, θ̄ )) defined on the (2 + 2)-dimensional supermanifold with
the following super expansions along the Grassmannian direction θ̄ of the supermanifold:

(
Ba

µT a
)
(x, θ̄ ) = (

Aa
µT a

)
(x) + θ̄

(
Ra

µT a
)
(x)

(�aT a)(x, θ̄) = (CaT a)(x) − iθ̄ (BaT a)(x) (3.1)

(�̄aT a)(x, θ̄) = (C̄aT a)(x) + iθ̄ (BaT a)(x)

where the signs have been chosen for later algebraic convenience only. Some of the
salient and relevant points at this juncture are: (i) in general, the (2 + 2)-dimensional
supermanifold is parametrized by the superspace coordinates ZM = (xµ, θ, θ̄ ) where
xµ (µ = 0, 1) are the even spacetime coordinates and θ, θ̄ are the odd Grassmannian variables
(θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0). However, here we choose only the chiral superfields which
depend only on the superspace variables ZM = (xµ, θ̄). (ii) The most general expansions for
the even superfield Bµ and odd superfields � and �̄, along θ -, θ̄ - and θ θ̄-directions of the

5 It will be noted that we have chosen a 2D Minkowskian manifold where metric has opposite signs in the diagonal
entries. To be very precise, this manifold is not a compact manifold. To have the accurate meaning of the topological
invariants, homology cycles, etc (and their connections with the notions in the algebraic geometry), one has to consider
the Euclidean version of the 2D Minkowskian manifold which turns out to be the 2D closed Riemann surface. In
this case, the 2D metric will have the same signs in the diagonal entries and µ, ν, ρ, . . . = 1, 2. In fact, on these
lines, a detailed analysis for the 2D (non-)Abelian gauge theories has been performed in [32]. For the sake of brevity,
however, we shall continue with our Minkowskian notation, but we shall keep in mind this crucial point and decisive
argument.
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supermanifold, are [17, 21]6

(
Ba

µT a
)
(x, θ̄ ) = (

Aa
µT a

)
(x) + θ̄

(
Ra

µT a
)
(x) + θ

(
R̄a

µT a
)
(x) + iθ θ̄

(
Sa

µT a
)
(x)

(�aT a)(x, θ̄) = (CaT a)(x) − iθ̄ (BaT a)(x) + iθ(B̄aT a)(x) + iθ θ̄(saT a)(x)

(�̄aT a)(x, θ̄) = (C̄aT a)(x) + iθ̄ (BaT a)(x) − iθ(B̄aT a)(x) + iθ θ̄(s̄aT a)(x).

(3.2)

The chiral limit (i.e. θ → 0) of the above expansion has been taken into (3.1). (iii) The
horizontality condition (see, e.g., [17, 21]) on (3.2) leads to the derivation of the off-shell
nilpotent (anti-)BRST symmetries. We shall see later that the same condition on (3.1) yields
the on-shell nilpotent BRST symmetry alone. (iv) The auxiliary fields in (3.1) are the fermionic
(odd) fields Rµ and bosonic (even) fields B and B. The corresponding fields in (3.2) are
Rµ, R̄µ, s, s̄ and B, B̄,B, B̄, Sµ. (v) In expansions (3.1) and (3.2), all the local fields on the
rhs are functions of the spacetime variables xµ alone.

Now we invoke the horizontality condition (F̃ = D̃Ã = DA = F) on the super curvature
2-form F̃ = 1

2 (dZM ∧ dZN)F̃MN by exploiting the Maurer–Cartan equation, as

F̃ = d̃Ã + Ã ∧ Ã ≡ dA + A ∧ A = F (3.3)

where the super 1-form connection Ã (in terms of the chiral superfields) and super exterior
derivative d̃ (in terms of the chiral superspace variables (xµ, θ̄)) are defined as

Ã = dZMÃM = dxµBµ(x, θ̄) + dθ̄�(x, θ̄)
(3.4)

d̃ = dZM∂M = dxµ∂µ + dθ̄∂θ̄ .

The above definitions lead to the following expressions:

d̃Ã = (dxµ ∧ dxν)(∂µBν) + (dxµ ∧ dθ̄ )(∂µ� − ∂θ̄Bµ) − (dθ̄ ∧ dθ̄ )(∂θ̄�)
(3.5)

Ã ∧ Ã = (dxµ ∧ dxν)(BµBν) + (dxµ ∧ dθ̄ )([Bµ,�]) − 1
2 (dθ̄ ∧ dθ̄ )({�,�}).

Now the horizontality restrictions in (3.3) imply the following:

∂µ� − ∂θ̄Bµ + [Bµ,�] = 0 ∂θ̄� + 1
2 {�,�} = 0

(3.6)
∂µBν − ∂νBµ + [Bµ,Bν ] = ∂µAν − ∂νAµ + [Aµ,Aν].

The first two relations in the above equation lead to the following expressions for the auxiliary
fields in terms of the basic fields of the Lagrangian density (2.1):

Rµ(x) = DµC(x) B(x) = − i
2 (C × C)(x) [B(x), C(x)] = 0 (3.7)

and the lhs of the last relationship (with F̃ µν = ∂µBν − ∂νBµ + [Bµ,Bν]) yields

F̃ µν = Fµν + θ̄ (DµRν − DνRµ) ≡ Fµν + θ̄Fµν × C (3.8)

where we have used DµRν = ∂µRν + [Aµ,Rν], Rµ = DµC, [Dµ,Dν ]C = Fµν × C. The
total antisymmetric property of f abc in a, b, c allows one to trivially check that the kinetic
energy term of the Lagrangian density (2.1) remains invariant under transformation (3.8)(
i.e. − 1

4Fµν · Fµν = − 1
4F̃

µν · F̃ µν

)
. Thus, physically, the horizontality condition implies that

the kinetic energy term of the Lagrangian density remains invariant (and equal to the square
of the ordinary curvature tensor). In other words, the supersymmetric contribution coming
from the θ̄ -component of the super curvature tensor F̃ µν does not lead to any additional
changes to the usual kinetic energy term

(− 1
4Fµν · Fµν

)
which is defined on the ordinary

2D spacetime manifold. It is obvious from equation (3.7) that the horizontality restriction
6 All the signs in the analogue of the super expansions (3.2) have been taken to be only positive in [17, 21]. We
invoke here some negative signs for the sake of later algebraic convenience without changing the physical content of
the theory.
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(3.3) does not fix the auxiliary field B(x) = (BaT a)(x) in terms of the basic fields of the
Lagrangian density (2.1). However, it has been shown [5, 6] that the off-shell nilpotent BRST
and co-BRST symmetries can be derived if we linearize the kinetic and gauge-fixing terms of
(2.1) by invoking two auxiliary fields B and B in the following way:

LB = B · E − 1
2B · B + (∂ρA

ρ) · B + 1
2B · B − i∂µC̄ · DµC (3.9)

which shows that B = −(∂ρA
ρ).7 Thus, the super expansion in (3.1) can be re-expressed, in

terms of the expressions for the auxiliary fields in (3.7) and B = −(∂ρA
ρ), as

Bµ(x, θ̄) = Aµ(x) + θ̄ (DµC)(x) ≡ Aµ(x) + θ̄ (sbAµ(x))

�(x, θ̄) = C(x) − 1
2 θ̄ (C × C)(x) ≡ C(x) + θ̄ (sbC(x)) (3.10)

�̄(x, θ̄) = C̄(x) − iθ̄ (∂ρAρ)(x) ≡ C̄(x) + θ̄ (sbC̄(x)).

With the above expansions as inputs, the on-shell nilpotent BRST symmetries in (2.2) can be
concisely expressed in the language of superfields as

sbBµ = ∂µ� + (Bµ × �) sb� = − 1
2 (� × �) sb�̄ = −i(∂µBµ). (3.11)

In fact, in the above three transformations, the first yields sbAµ = DµC, sbC = − 1
2C ×C; the

second produces sbC = − 1
2C×C and the third leads to sbC̄ = −i(∂µAµ), sb(∂µAµ) = ∂µDµC

in terms of the basic fields of (2.1). Comparing with (2.4) it is clear that

i
∂

∂θ̄
Bµ(x, θ̄) = [Qb,Aµ] i

∂

∂θ̄
�(x, θ̄) = {Qb,C} i

∂

∂θ̄
�̄(x, θ̄ ) = {Qb, C̄} (3.12)

which shows that the conserved and on-shell nilpotent BRST charge Qb (that generates the
BRST transformations (2.2)) can be geometrically interpreted as the generator of translation(

∂

∂θ̄

)
along the Grassmannian direction θ̄ of the supermanifold. This clearly establishes

the fact that the horizontality condition w.r.t. the super covariant derivative D̃ = d̃ + Ã (in
F̃ = D̃Ã = DA = F ) leads to the derivation of the on-shell nilpotent BRST symmetries
for the non-Abelian gauge theory and it plays an important role in providing the geometrical
interpretation for the BRST charge Qb on the (2 + 2)-dimensional supermanifold.

4. On-shell nilpotent co-BRST symmetry: superfield approach

It is evident from our earlier discussions that F = DA = dA + A ∧ A defines the 2-form
curvature tensor on an ordinary compact manifold. The operation of an ordinary co-exterior
derivative δ = −∗d∗ on the 1-form A = dxµAa

µT a leads to the definition of the gauge-fixing
term (i.e. δA = ∂µAµaT a). Interestingly, the operation of the covariant co-exterior derivative
 = − ∗D∗ on the 1-form A leads to the same gauge-fixing term. This can be seen (with
∗(dxµ) = εµν(dxν), ∗(dxµ ∧ dxν) = εµν, ∗A = εµν(dxν)Aµ) as follows:

A = −∗(d + A) ∗ A = −∗ d(∗A) − ∗(A ∧ ∗A) = ∂µAµaT a (4.1)

where the total antisymmetry property of the f abc plays an important role in proving
Aµ × Aµ = 0. In the simplest way, this statement can be verified by noting that
DµAµ = ∂µAµ + Aµ × Aµ = ∂µAµ, which is, in essence, the reflection of (4.1).

Now we shall generalize the horizontality condition (D̃Ã = DA) of equation (3.3) (where
(super) exterior derivatives (d̃) d and (super) 1-forms (Ã) A play an important role) to the case
7 For clarity, it is to be noted that the off-shell nilpotent BRST (s̃b) and co-BRST (s̃d ) symmetry transformations:
s̃bAµ = DµC, s̃bC̄ = iB, s̃bB = 0, s̃bC = − 1

2 C × C, s̃bB = B × C, s̃bE = E × C, s̃b(∂ρAρ) = ∂ρDρC and
s̃dAµ = −εµν∂

ν C̄, s̃dC = −iB, s̃dB = 0, s̃d C̄ = 0, s̃dB = 0, s̃d (∂ρAρ) = 0, s̃dE = Dµ∂µC̄, s̃d (Dµ∂µC̄) = 0
leave the Lagrangian density (3.9) invariant (up to a total derivative).
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where the (super) co-exterior derivatives (δ̃) δ operate on (super) 1-forms (Ã) A to define a
(super-)scalar. Thus, the analogue of the horizontality condition8 is

δ̃Ã = δA δA = (∂µAµ) δ = − ∗d∗ δ̃ = −� d̃� A = dxµAµ (4.2)

where, in the definition of δ̃Ã = −� d̃ � Ã, we have to take into account

d̃ = dxµ∂µ + dθ̄∂θ̄ � Ã = εµν(dxν)Bµ(x, θ̄) + dθ̄�̄(x, θ̄) (4.3)

so that the operation of d̃ on the 1-form (�Ã) can exist in the chiral space. Here the Hodge
duality � operation is defined on the (2 + 2)-dimensional supermanifold. In its most general
form, this operation on the super differentials and their wedge products are

� (dxµ) = εµν(dxν) � (dθ) = (dθ̄ ) � (dθ̄ ) = (dθ)

� (dxµ ∧ dxν) = εµν � (dxµ ∧ dθ) = εµθ � (dxµ ∧ dθ̄ ) = εµθ̄

� (dθ ∧ dθ) = sθθ � (dθ ∧ dθ̄ ) = sθ θ̄ � (dθ̄ ∧ dθ̄ ) = sθ̄ θ̄

(4.4)

where εµθ = −εθµ, εµθ̄ = −εθ̄µ, sθ θ̄ = sθ̄θ , etc. The choice of (�Ã) in (4.3) is derived from
the following general expression for the super 1-form Ã and the application of the � operation
(4.4) on it, in the (2 + 2)-dimensional supermanifold:

Ã(x, θ, θ̄ ) = dxµBµ(x, θ, θ̄ ) + dθ�̄(x, θ, θ̄ ) + dθ̄�(x, θ, θ̄ )
(4.5)

� Ã(x, θ, θ̄ ) = εµν(dxν)Bµ(x, θ, θ̄ ) + dθ̄�̄(x, θ, θ̄ ) + dθ�(x, θ, θ̄ ).

Taking the chiral limit (θ → 0, dθ → 0) of the above equation leads to the proof for the
choice of (�Ã) in (4.3). With the help of (4.4) and (4.3), the lhs of the dual horizontality
condition (4.2) can explicitly be written as

δ̃Ã = (∂µBµ) + sθ̄ θ̄ (∂θ̄ �̄) − εµθ̄ (∂µ�̄ + εµν∂θ̄B
ν). (4.6)

Application of the requirement in (4.2) allows us to set the coefficients of εµθ̄ and sθ̄ θ̄ equal to
zero. This restriction leads to the following relationships:

Rµ(x) = −εµν∂
νC̄(x) B(x) = 0. (4.7)

The other restriction, ensuing from (4.2), is ∂µBµ = ∂µAµ, which leads to ∂µRµ = 0. It
is evident that (4.7) automatically satisfies this condition. Physically, the dual horizontality
condition amounts to the restriction that the ordinary gauge-fixing term (∂ · A) defined on
the ordinary 2D spacetime manifold remains intact and unchanged. In other words, the
supersymmetric contribution emerging from the coefficients εµθ̄ , sθ̄ θ̄ in (4.6) does not alter the
original value of the gauge-fixing term defined on the 2D ordinary spacetime manifold (i.e.
δA = (∂ ·A)). It will be noted that the auxiliary field B(x) is not fixed by the dual horizontality
condition in (4.2). However, our argument in the context of choice of the Lagrangian density
(3.9) for the off-shell nilpotent BRST and co-BRST symmetries comes to our rescue as we
have B(x) = E(x). Thus, expansion (3.1), with the results in (4.7), can be expressed as

Bµ(x, θ̄) = Aµ(x) − θ̄ εµν∂
νC̄(x) ≡ Aµ(x) + θ̄ (sdAµ(x))

�(x, θ, θ̄ ) = C(x) − iθ̄E(x) ≡ C(x) + θ̄ (sdC(x)) (4.8)

�̄(x, θ, θ̄) = C̄(x) + iθ̄ (B(x) = 0) ≡ C̄(x) + θ̄ (sd C̄(x)).

The above expansions (due to the dual horizontality condition in (4.2)) allow one to express
the on-shell nilpotent co-BRST symmetry transformations of (2.2), in terms of the chiral
superfields (4.8), as

sdBµ = −εµν∂
ν�̄ sd�̄ = 0 sd� = +iεµν

(
∂µBν + 1

2Bµ × Bν

)
(4.9)

8 This condition has been christened the dual horizontality condition in [18, 26] because the (super) co-exterior
derivatives (δ̃) δ are Hodge dual to (super) exterior derivatives (d̃) d on the (super) manifolds with (super) Hodge
operations (�) ∗ as defined in (4.2) and (4.4).
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where the first transformation leads to sdAµ = −εµν∂
νC̄, sd C̄ = 0, the second yields sd C̄ = 0

and the third produces sdC = −iE, sdE = Dµ∂µC̄ in the language of the basic fields of
the Lagrangian density (2.1). Equation (4.8) establishes that the on-shell nilpotent co-BRST
charge Qd geometrically corresponds to the translation generator

(
∂

∂θ̄

)
along the Grassmannian

direction θ̄ of the supermanifold as

∂

∂θ̄
�(x, θ̄) = −i[�(x),Qd]± � = �, �̄,Bµ � = C, C̄,Aµ (4.10)

where the bracket [ , ]± stands for the (anti-)commutator for the � (or corresponding �) being
(fermionic) bosonic in nature and we have exploited the defining relationship (2.4).

5. Topological aspects: superfield formalism

We have derived in section 2 some of the key topological features in the Lagrangian formulation
and shown that, modulo some total derivatives, the Lagrangian density (2.1) can be expressed
as the sum of BRST and co-BRST anti-commutator (cf (2.5)). In the language of the chiral
superfields, the same can be expressed, modulo total derivative ∂µXµ, as

LB = − i

2

∂

∂θ̄

([
εµν

(
∂µBν + 1

2Bµ × Bν

) · �
] |co-BRST + [(∂µBµ) · �̄]|BRST

)
(5.1)

where the subscripts BRST and co-BRST stand for the insertion of the chiral super expansions
given in (3.10) and (4.8), respectively, and Xµ = i

2 (C̄ · DµC + ∂µC̄ · C). In the above
computation, we have used[
εµν

(
∂µBν + 1

2Bµ × Bν

) · �] |co-BRST = −(E · C + θ̄Dµ∂µC̄ · C) + iθ̄E · E.

Mathematically, the above Lagrangian density is nothing but the θ̄ -componentof the composite
fields (∂µBµ) ·�̄ and εµν

(
∂µBν + 1

2Bµ × Bν

) ·� when we substitute the chiral expansions
(3.10) and (4.8) that have been obtained after the application of (dual) horizontality conditions.
Incorporating the geometrical interpretation for the on-shell nilpotent (co-)BRST charges, it
can be seen that the Lagrangian density (2.1) corresponds to the translation of some local (but
composite) chiral superfields along the θ̄ -direction of the (2 + 2)-dimensional supermanifold
where the generators of the translation on the supermanifold are conserved and on-shell
nilpotent BRST and co-BRST charges (Qb and Qd ).

Let us now concentrate on the topological invariants of the theory. We can provide the
geometrical origin for the zero-forms W0 and V0 of equations (2.10) and (2.9) which are
(co-)BRST invariants. To this end, we note the following:

(� · �̄)|BRST = C · C̄ + iθ̄C · (∂µAµ) − 1
2 θ̄ (C × C) · C̄

(5.2)
(� · �̄)|co-BRST = C · C̄ − iθ̄E · C̄.

It is now obvious that zero-forms in (2.9) and (2.10) are as follows:

i
∂

∂θ̄
(� · �̄)|BRST = V0 i

∂

∂θ̄
(� · �̄)|co-BRST = W0. (5.3)

Mathematically, it means that the on-shell (∂µDµC = 0) BRST-invariant quantity V0 is
nothing but the θ̄ -component of the local (but composite) chiral superfield (� · �̄) when
we substitute for them the super expansions (3.10) that are obtained after the imposition of
the horizontality condition (3.3). In the language of the geometry on the supermanifold, V0

is equivalent to a translation of the chiral superfield (� · �̄) along the θ̄ -direction which is
generated by the on-shell nilpotent BRST charge Qb. In a similar fashion, we can provide
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a geometrical interpretation of the on-shell (Dµ∂µC̄ = 0) co-BRST-invariant zero-form W0.
The rest of the topological invariants (Vk,Wk, k = 1, 2) can be computed by the following
recursion relations [5, 6] that characterize the topological nature of this theory:

sbVk = dVk−1 sdWk = δWk−1 d = dxµ∂µ δ = i dxµεµν∂
ν. (5.4)

Now we provide the geometrical interpretation for the symmetric energy–momentum
tensor T (s)

µν of the theory in the language of the translation on the (2 + 2)-dimensional
supermanifold. In fact, it can be checked that the T (s)

µν of (2.6), modulo some total derivatives
X(s)

µν , can be expressed as

T (s)
µν + X(s)

µν = i

2

∂

∂θ̄

([
Y (s)

µν

]|BRST +
[
Z(s)

µν

]|co-BRST
)

Y (s)
µν = ∂µ�̄ · Bν + ∂ν�̄ · Bµ + ηµν(∂ρAρ) · �̄ (5.5)

Z(s)
µν = εµρ∂ν� · Bρ + ενρ∂µ� · Bρ + ηµνε

ρσ
(
∂ρBσ + 1

2Bρ × Bσ

) · �

where the explicit form of the total derivative term X(s)
µν is

X(s)
µν = 1

2
∂µ[(∂ρA

ρ) · Aν + E · ενρA
ρ] +

1

2
∂ν[(∂ρA

ρ) · Aµ + E · εµρA
ρ]

− i

2
ηµν∂ρ[∂ρC̄ · C + C̄ · DρC]. (5.6)

It is obvious from (5.5) that T (s)
µν geometrically corresponds to the translations of the local (but

composite) chiral superfields Y (s)
µν and Z(s)

µν along the θ̄ -direction of the (2 + 2)-dimensional
supermanifold. These translations are generated by the on-shell nilpotent BRST and co-BRST
charges Qb and Qd , respectively. Mathematically, the expression for T (s)

µν , modulo some total
derivatives, is nothing but the θ̄ -component of the composite chiral superfields Y (s)

µν and Z(s)
µν

where expansions (4.8) and (3.10) for the chiral superfields are taken into account. Of course,
these expansions are obtained after the imposition of (dual) horizontality conditions which
play a very significant role here.

6. Conclusions

In our present investigation, we have concentrated on the key topological properties of
the 2D self-interacting non-Abelian gauge theory in the framework of the chiral superfield
formulation. Our key observations are: (i) it is the existence of the novel on-shell nilpotent co-
BRST symmetry (together with the familiar on-shell nilpotent BRST symmetry) that enables us
to furnish a convincing proof for the topological nature of the 2D self-interacting non-Abelian
gauge theory in the Lagrangian formulation because the Lagrangian density and symmetric
energy–momentum tensor for the theory turn out to be the sum of BRST- and co-BRST-
invariant parts (cf (2.5) and (2.7)). (ii) In the framework of the superfield formulation, this fact
is reflected in the appearance of the Lagrangian density and the symmetric energy–momentum
tensor which turn out to be the total derivative w.r.t. a Grassmannian variable θ̄ (cf (5.1)
and (5.5)). Geometrically, this is equivalent to the translation of some local (but composite)
chiral superfields along the θ̄ -direction of the supermanifold. These translations are basically
generated by the conserved and on-shell nilpotent (co-)BRST charges. (iii) Our claim is
that whenever a Lagrangian density and corresponding symmetric energy–momentum tensor
turn out to be a total derivative w.r.t. a Grassmannian variable, the theory is a topological field
theory and it owes its origin to the (super) cohomological operators (d̃) d and/or (δ̃) δ. (iv) It is
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important for our whole discussion (in this paper) to derive the on-shell nilpotent (co-)BRST
symmetries in the superfield formulation because the Lagrangian density (2.1) is endowed
with only these symmetries and it does not respect anti-BRST and anti-co-BRST symmetries.
(v) The choice of the chiral superfields and imposition of the (dual) horizontality conditions
enable us to derive the on-shell nilpotent BRST and co-BRST symmetries. This feature is
different from the earlier attempts to derive the off-shell nilpotent (anti-)BRST symmetries [17,
20–22] (and (anti-)co-BRST symmetries [17]) in the framework of the superfield formulation
where the most general super expansions for the superfields were considered. (vi) In our
present analyses, the Lagrangian density (2.1) and the corresponding symmetric energy–
momentum tensor (2.6) play key roles. Thus, the geometrical understanding of these
physically relevant and interesting quantities might turn out to play an important role in
the context of 2D gravity where a non-trivial (spacetime-dependent) metric is chosen for
the discussion of such gauge theories in the background of the curved spacetime (super)
manifolds.

It is a well-known fact that the 2D Abelian as well as non-Abelian (Yang–Mills) gauge
theories possess no physical degrees of freedom when they are defined on an ordinary 2D
spacetime manifold without any non-trivial topology at the boundary. In other words, for all
such manifolds, the fields of the theory are assumed to fall off rapidly at infinity. Thus, our
present 2D gauge theory, according to the standard definition of a TFT on a flat spacetime
manifold with a spacetime-independent metric (see, e.g., [1] for details), turns out to be a new
type of TFT because the (co-)BRST symmetries of the theory gauge out the propagating degrees
of freedom. In our chiral superfield formulation, this fact is reflected in (5.1) and (5.5) where we
have been able to show that the Lagrangian density and symmetric energy–momentum tensor
of the theory are total Grassmannian derivatives, modulo some total spacetime derivatives.
These latter derivatives do not contribute anything substantial in our present discussion. This
will not be the case, however, if this 2D gauge theory is defined, say, on a circle where the
boundary terms will contribute. In fact, for this case, there will be physical degrees of freedom
associated with the gauge field. Furthermore, it is clear that all the physical fields of the
theory will not go to zero at the boundary. Consequently, this theory will not be a TFT. In
mathematical terms, now the total derivatives ∂µXµ and X(s)

µν of (5.1) and (5.5) cannot be
neglected. As a result, the Lagrangian density and symmetric energy–momentum tensor will
not be able to be expressed as the sum of (co-) BRST anti-commutators (in contrast to what we
have shown in (2.5) and (2.7)). In the language of our present chiral superfield formulation,
we shall not be able to express the above quantities as a total derivative w.r.t. the Grassmannian
variable.

It would be nice to generalize our work to 4D 2-form free Abelian gauge theory
where the existence of (co-)BRST symmetries has been shown [10]. On face value,
however, it appears that there will be difficulty in such a generalization because of the
fact that there is a single physical degree of freedom associated with the gauge field of
the theory. But, we feel, it is important to try such a generalization so that we can
learn more about some aspects of the 2-form gauge theory which plays a significant
role in the context of string theory and field theory. In fact, some steps have already
been taken in this direction [33]. The superfield formulation of the 2D interacting (non-
)Abelian gauge theories is another direction that can be pursued later. It might be
interesting to follow the approach adopted in [32] to discuss the 2D free Abelian and
self-interacting non-Abelian gauge theories on the 2D closed Riemann surface (i.e. the
Euclidean version of the 2D Minkowski manifold) of genus 1 (and/or higher genus Riemann
surfaces) and study the topological invariants of this theory. It would be gratifying to
find their connection with the pertinent notions in the domain of algebraic geometry.
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These are some of the issues that are under investigation and our results will be reported
elsewhere.
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